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The primary goal of this study is to clarify some very basic questions and outstanding problems 
in the field of surface diffusion in porous catalysts. Attention is focused on certain mathematical 
techniques utilized in the past to interpret experimental data. The common assumption of adsorp- 
tion equilibrium is shown to lead to very serious errors. Two approximate perturbation techniques 
are presented which lead to analytical expressions for surface diffusion enhancement as a function 
of the relevant parameters. These expressions are shown to yield good predictions of overall 
diffusivities. We conclude that similar analyses should be employed to interpret or reevaluate 
surface-diffusion data and, particularly. to check the adsorption equilibrium assumption. c 19X6 
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1NTRODUCTlON 

Surface diffusion in porous catalysts re- 
mains one of the least studied and probably 
least understood phenomena in catalysis. 
The knowledgeable observer is hard- 
pressed to understand the lack of scientific 
interest. Although the existing surface dif- 
fusion data is scarce (/-5), it clearly points 
out that surface diffusion is an important 
mechanism for transporting reactants and 
products in porous catalysts. In many 
cases, transport by surface diffusion is at 
least if not more important than bulk diffu- 
sion. 

Many works in catalysis discount trans- 
port by surface diffusion, on the grounds 
that the diffusivities are usually two orders 
of magnitude smaller than the correspond- 
ing bulk diffusivities. This is one miscon- 
ception pointed out in the early seventies 
by Smith and co-workers (4, 5). Although 
generally true that adsorbed molecules on a 
catalytic surface move on an average at a 
slower pace than molecules in the bulk of 
the adjacent pore space, their numbers can 
be far greater. As a result, the effect of 

transport can be as important as bulk diffu- 
sion. To visualize this, one needs only to 
compare the number of riders transported 
in certain major cities by a (relatively) slow 
bus system to those conveyed by private 
automobiles. In another domain, of more 
relevance, a similar state of affairs may ex- 
ist for the carrier mediated transport of ox- 
ygen in biological systems by (slow but con- 
centrated) carriers such as hemoglobin. 

Standard texts in reaction engineering 
(68), which typically devote several chap- 
ters to different aspects of diffusion in het- 
erogeneous catalysts, give at most sketchy 
accounts of surface diffusion. Research pa- 
pers fare only slightly better. Riekert (9), in 
a recent publication, addresses one of the 
most common misconceptions surrounding 
the question of adsorption-desorption 
equilibrium. As he correctly surmises, a 
strict interpretation of adsorption equilib- 
rium as a condition of zero net rate at all 
points on the pore surface would effectively 
rule out transport by surface diffusion. We 
agree and show below that the question is 
one of interpretation. On the other hand, 
Riekert (9) draws the rather distressing 
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conclusion that it is not possible to deter- 
mine surface diffusivities experimentally 
except by measurement of local surface 
concentration gradients. Although experi- 
ments of the above type have been recently 
reported for single crystal catalysts (IO), it 
will probably be years, if ever, before sur- 
face gradients can be measured in the typi- 
cal industrial catalyst pellet. Far from aban- 
doning hope, it is the goal of this paper to 
show that the effects of surface diffusion 
can be assessed in an analytical fashion. 

In a recent paper, Aris (11) has given 
such an analysis, which in many respects 
sets the record straight. He correctly points 
out that effective diffusivities measured in 
the presence of surface diffusion are 
strongly dependent on local bulk concen- 
trations. Aris’ mathematical treatment is, 
however, based on a regular perturbation 
analysis for small concentration gradients, 
which has a limited region of applicability. 

Here we wish to show that more general 
and powerful techniques are available to 
treat the problem. In fact, since the mathe- 
matical problems are essentially equiva- 
lent, practically all the mathematical appa- 
ratus required for analysis has already been 
developed for the facilitated diffusion 
through membranes (12-14). While it is 
not, therefore, strictly necessary to develop 
an analysis from the ground up, the present 
paper, partly didactic in nature, aims to fa- 
miliarize workers in catalysis with a few ba- 
sic mathematical aspects of surface diffu- 
sion in porous catalysts and, also, to rectify 
certain frequent misconceptions and incor- 
rect assumptions. 

Attention will be focused here on the 
simplest geometry, a straight cylindrical 
pore, through which molecular transport 
occurs by simultaneous bulk and surface 
diffusion. Such a model, of course, 
presents an oversimplified description of 
diffusion in the tortuous porous structure 
common to most industrial catalysts; but 
such complexities, the subject of future 
works (15), need not concern us here. At 
any rate, there exist today several model 

porous solids (typically polycarbonate or 
mica sheets and anodized aluminum foils) 
having physically straight cylindrical pores 
with very narrow, unimodal pore size dis- 
tributions and closely mimicing our mathe- 
matical idealization. Later in this paper we 
report some experimentally measured dif- 
fusivities for such solids. 

THE MATHEMATICAL PROBLEM 

We consider a steady state in which the 
diffusing-species concentration is main- 
tained constant at the ends of a pore (a situ- 
ation which is conveniently attained experi- 
mentally for gaseous systems by means of 
the typical Kallenbach cell). We deal here 
with the case of a single diffusing species 
for which the local bulk and surface diffu- 
sional fluxes are given, respectively, as 

dC 
Jb = -Db”‘:x, 

and 

J, = -D,2nr 2. 

The equations describing steady-state 
diffusion in a single pore then are 

D,, $$ - g(C, n) = 0, 

d2n 

(2) 

Ds z + avg(C, n) = 0, (3) 

with 

C=&; !g= 0 atx=O (4) 

c=cL; f$= 0 atx=L (5) 

where g(C, n) denotes the net rate of ad- 
sorption on the catalyst surface, that is, the 
rate of adsorption minus the rate of desorp- 
tion. As pointed out by Riekert, when ad- 
sorption equilibrium is attained, g(C, n) = 0 
throughout the pore and one concludes 
from Eqs. (3), (4), and (5) that 
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dn 
&=O for OSxSL, (6) 

and, hence, that surface diffusional flux is 
zero. Thus one might erroneously conclude 
that adsorption equilibrium, assumed in 
most published studies, implies zero sur- 
face transport. This conceptual problem is 
the result of the peculiar nature of the equi- 
librium assumption. When invoked on the 
basis of fast adsorption-desorption kinet- 
ics, it represents in mathematical terms a 
singular perturbation of the type which has 
been well studied in the context of facili- 
tated transport (12-14). As a result, we 
now appreciate that the no-flux conditions 
on the surface species in Eqs. (4) and (5) 
cannot be imposed in this equilibrium limit, 
owing to the existence of reactive zones at 
the ends of the pore, x = 0, L. This point 
will be illustrated by the following analysis. 

For present purposes, it will be assumed 
that adsorption and desorption processes 
are of simple Langmuir type, i.e., 

g(C, n) = K,C(n, - n) - K#z. (7) 

The mathematical analysis described here 
can be applied to many other complex 
forms of g(C, n) (12-24). To identify the 
relevant parameters, we take 

@=L 

and Eqs. (2)-(6) become 

d2X 
d52 - (P2G(X, f3) = 0 

$ + <a2G(X, 0) = 0 

d0 
X=1; g=O at[=O 

(9) 

(8) 

(9) 

(10) 

x = x,; 
dt? 

;r5=O ats‘=l 
(11) 

with 

G(X, 0) = X( 1 - t9) - 8. (12) 

The phenomenon of surface diffusion is 
therefore characterized by four dimension- 
less groups, namely, a Thiele modulus @ 
representing the ratio of bulk diffusion to 
adsorption times; the thermodynamic equi- 
librium constant K; the ratio of pore-mouth 
concentrations XL, and a transport ratio 
(with a, = 2/r for a cylindrical pore), 

5= 
D&H &‘rrl-2(cH - 0)/L 
D,w, - = D,27rr(nt - 0)/L ’ (13) 

which represents the ratio of characteristic 
bulk and surface diffusional fluxes. The 
boundary value problem (8)-(12), can of 
course be treated numerically, but such an 
approach does not lend itself easily to ex- 
perimental parameter identification and 
sensivity studies. Fortunately there exist a 
number of asymptotic and approximate an- 
alytical methods, which are valid in differ- 
ent regions of the (X,, @, K, 5) parameter 
space and which we now apply. 

I. Small Gradients and Linearized Kinetic 
Analysis 

Aris (II) has given an analysis for XL = 1 
or E = 1 - XL = 0 (i.e., for Cu = C,) where 
one can apply the following regular pertur- 
bation scheme 

X(5) = X0(5) + EX,(() + E2X2k3 + . . . 
(14) 

O(‘f) = eok7 + ~~I(0 
+ E%+(5) + . . . , (15) 

where X0(t) = 1 and 0,(t) are solutions of 

G(Xo, 6,) = 0. (16) 

If one expresses G(X, 0) in terms of an E 
series expansion around X0, o0 then 
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G(X, 0) = G(Xo, 13~) + 

= X,Gx + &Go + O(.s2) 

with 

Gx = (g),,; Go = (z),, (18) 

where subscript zero refers to conditions at 
X = X0; 6 = 19~. Substituting Eqs. (14)-(18) 
into Eqs. (8)-(12), one gets the linear forms 

d2X, - zz 
dt2 

@‘[GxX, + G&l (19) 

d28, 
- = -@B2[GXX, + G&l 
4Y2 

(20) 

dfh 
X,=0; z=O at<=0 (21) 

x, = 1; 
de, 
z=O att=l, (22) 

which admit analytical solution. The details 
can be found in Aris’ work (II). In experi- 
ments on diffusion through porous cata- 
lysts, one usually expresses the measured 
flux in terms of an effective diffusivity and 
the overall concentration gradient as 

Flux = -D, (“” L ‘“). (23) 

Of interest then is the quantity (D,l& - I), 
which is the measure of diffusional flux be- 
yond that expected for simple bulk (Fickian 
or Knudsen) diffusion alone. In the field of 
facilitated transport through membranes, 
the above quantity is called the “enhance- 
ment” or “facilitation” factor. 

Based on the above analysis, we recall 
that Aris (II) has given the following ex- 
pression for the surface diffusion enhance- 
ment factor: 

& It-h ---I= 
Db W(P) + A 

(24) 

where 

tanh p 
W(P) = --y 

p = i ((1 + K)2 + 1 “2 
2 [ K(1 + K) I (26) 

h = [ (1 + a2 
K 

II. Slow Adsorption and Regular 
Perturbation Analysis for Small @ 

For small values of @, one can apply a 
different type of regular perturbation 
scheme, with X and 8 expressed as 

J&9 = X0(5) + @zx,(t) 
+ Q4X2(0 + o(@8h (28) 

f&9 = co(t) + @2fh(5) 
+ a402(() + O(Q8). (29) 

Expanding G(X, 13) around X0, 13~ in terms 
of a2 and substituting (28)-(29) and the 
G(X, 0) expansion into Eqs. (8)-(12), one 
obtains for terms of order zero: 

d2Xo d200 
- = 0 and F = 0, 
dt2 

x0= 1; 
dt’o 
dr=O ate=o 

x0 = XL; 
deo 
z=O att=l 

order one: 

d2X, 
- = GWo, 00) 
dt2 

and 

d2& 
- = -03x0, 001, 2 

x, 1 d8 ; $= 0 at.$=O 

de, 
X1=0; -g-=0 at[=l 

and, order two: 

d2X2 
- = GxX, + Gee, 
dt2 

d2t12 
- = -tGxX, - iJG& , fw 

(30) 

(31) 

(32) 

(33) 

(34) 
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X2=0; $=O at.$=O 

(35) 
& 

X2 = 0; z = 0 at .$ = 1. 

The system of Eqs. (30)-(35) is again linear 
and admits analytical solutions. The mathe- 
matical details are similar to those in (16), 
and the resulting surface diffusion factor is 
found to be 

X 

ho k ‘\ 

2-l=@2(&) 

- Q4 (&) + W% W-3 

where ‘\ 
e 

[ 
1 - x, a!1 = - p+Zl - -I- 

6[K(l + XL) + 21 1 (37) +A QZ 
0 

1 
[ 

1 - XL 
a2 = 180 [K(l + XL) + 212 1 

d, 
+12 

3(1 + K) - (1 - XL) 
K 1 

ecL 

, 

FIG. 1. Schematic of the boundary layer structure 
for the diffusion reaction problem described in Eqs. 
(8)-( 12) for large values of 0. 

1 (1 + m-u - XL) -- 
40 [ K[K(l + XL) + 21 1 1 
+ 72 L (1 - XL125 

K[K(l + XL) -t 21 1 (38) 

with 

III. Rapid Adsorption and Singular 
Perturbation for Large @ 

Here we consider the case of rapid ad- 
sorption-desorption kinetics where one 
can employ a (‘ ‘Kreuzer-Hoof ‘d”) modi- 
fied singular perturbation analysis dis- 
cussed elsewhere (22-M). This provides a 
useful approximate solution, which be- 
comes asymptotically exact in the equilib- 
rium limit @ --, w. For large Cp (mathemati- 
cally + + co), Eqs. (8)-(12) indicate a 
boundary layer structure depicted schemat- 

ically in Fig. 1. In the central or “core” 
region of the pore 

G(X, 0) = 0, (39) 

and therefore we obtain the adsorption-de- 
sorption equilibrium condition 

(40) 

where BC and XC are the core values of 0 and 
X. At the left-hand boundary (5 = O), one 
introduces a new, stretched length coordi- 
nate 

5 2 = ; 
1 

with E = - -+ 0 a (41) 

and assumes that 

x = xc + &F(&, r> = xc 5=. 
I 

+<dY, 
I d[ (=a + E&E, $) 

+ EX(E, $) 

(42) 
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and where 

- de, t = (1 - e,,) + <(xc0 + i/K) 
8 = eco + 4 q 5=. + ET!+, 2,. (43) 

= 1 + kxco + 5 (’ +p) (51) 

Inserting Eqs. (41)-(43) into Eqs. (8)-(12) 
and also expanding G(X, 0) in terms of E, 
we obtain the (vector) equations for the 
boundary layer profiles: 

(pIi%, (44) 

F=(q); $=O atz=O (45) 

X-0; e+O, asj+w (46) 

where 

( )” = g ( 1 (47) 

and I is the unit matrix. 
The solution given in (49) satisfies the ini- 

tial condition but in order to satisfy the 
boundary conditions at ~0, the following ad- 
ditional equation must be satisfied: 

(’ - M’t) 
1 - xc0 

i 1 3 = 0, (52) 
0 

from which one obtains 

30 = -LJl - X,0). (53) 

The full solution of Eqs. (44)-(46) is then 
given by 

x 
i) 

1 
e 
=e -~""'@(l - X,0) [ 1 -5 . 

(54) 

and M is the (2 x 2) matrix of coefficients: 
One can apply a similar analysis at the 
right-hand boundary by defining a new 
stretched coordinate as l-5 nil= g= -. (55) & 

The solution in the right-hand boundary 
layer is given as 

= e-(N’“f) . @(XL _ XcL) (56) 

The formal solution of Eqs. (44)-(46) is where 

where into the pore can occur only by bulk diffu- 
sion. In the core region, however, transport 

80 = 0~~~ (a value yet to be determined) occurs by combined bulk and surface diffu- 
sion. Since the system is nonreactive, these 

and two fluxes must be equal, i.e., 

1 
N= 

1 - ecL -(Xc, + l/K) 

. 
(57) 

(49) 
3x1 - ecL) m-,, + I 1~) 1 

1 Certain matching conditions are now re- 
quired. Since de/d[ = 0 at 5 = 0, transport 

e-g#~~ = (50) - $I,=o = - % - z;-’ 2 (58) 
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which by means of Eq. (42) becomes 

From Eqs. (54) and (59) one gets 

5(1 - Xco)t”*@ - K [ 1 +xx,o 

X 
- 

1 + stx,, I 
= 0. (60) 

A similar equation can be derived for right- 
hand boundary: 

-{(XL - XcL)f’W - K [ xco 
1 + KX,o 

-J&L - 

1 + KXcL 1 = 0 (61) 

where 

I 

t’ = 1 + KXcL + ’ 
(1 +KKx’L)* (62) 

Equations (60)-(61) can be used to find the 
values for X,0 and XC~. Once these are 
found, the enhancement factor is given by 

& -- 
& 

1 

= (1 - &o)[@t I’* - 11 + (XL - XC,) 
1 - XL (63) 

which, incidentally, can be obtained from a 
general formula given in (13). 

IV. The Equilibrium Limit 

As mentioned in the Introduction, the 
oft-used assumption of complete adsorp- 
tion equilibrium and the zero-flux condi- 
tions for the surface concentrations at the 
boundaries are intrinsically inconsistent. If 
instead one expresses the total diffusional 
flux as 

-7rr*Db $$ - 2rrrD, g = constant (64) 

one obtains the effective diffusion equation 

Db$ [(I + 
where dnldC is 

2 D, dn dC 1 1 --- - 
r DbdC dx 

= 0 (65) 

to be evaluated from 
the equilibrium condition (39). For the 
Langmuir type adsorption-desorption iso- 
therm selected here the enhancement factor 
follows by integration, as 

D.5 K 

& - - ’ = ‘-’ (1 + KXL)(l + K) * @) 

Both, the singular perturbation and Aris’ 
regular perturbation expression (XL = 1) for 
the enhancement factor reduce to (66) for 
large values of the Thiele Modulus a. This 
is to be expected and serves as a consis- 
tency test for the two mathematical 
schemes. 

NUMERICAL EXAMPLES 

One should not expect Eqs. (24)-(27) and 
(66) to perform well outside the region of 
the parameter space for which intended. 
This is indicated in Figs. 2a-d, where the 
enhancement factor is plotted vs. Thiele 
Modulus for 5 = 0.1, K = 1 and various 
values of 1 - XL. The enhancement factors 
derived from the above four approximate 
analytical expressions are compared with 
the exact value, derived by numerical solu- 
tion of the system of Eqs. (8)-( 12). The ad- 
sorption-desorption equilibrium expres- 
sion performs very poorly in all four 
figures. The Aris expression works fairly 
well for large @ in Fig. 2a (1 - XL = 0.01) 
but rather poorly in the other cases, as was 
to be expected. Taken together, the pertur- 
bations in CD, however, perform well. It is 
clear from Fig. 2 that an exact solution, 
such as that obtained from numerical solu- 
tion of (8)-( 12) is required only for a narrow 
region of XL values. In the remaining range 
of @ values, the two approximate solutions 
serve exceptionally well, which in our opin- 
ion, is very important for the field of sur- 
face diffusion. Since both expressions are 
analytical, they can be conveniently uti- 
lized in parameter identification and esti- 
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5- XL’09 i 
K=I. (=Ol 

4- 

De 
--I 
Db 

3- 
EQUlLleRlUM LIMIT 

N/Z, 
/-*ii 

2- r _ <H’ 
,cy./ 

!3-, 
Db 

FIG. 2. Effect of @ on the enhancement factor. (---) A, Aris linearized theory; (...) R, regular 
expansion for small @; (-. .-. .) N, numerical (exact) solution; (-) S, singular-perturbation approximate 
solution for large @ (when different from N). (a) XL = 0.99, K = 1, 5 = 0.1. (b) XL = 0.9, K = 1, 5 = 0.1. 
(c)XL = 0.5, K = 1, 5 = 0.1. (d)X, = 0.1, K = 1, 4 = 0.1. 

mation studies. Given the current state 
of parameter identification in distributed 
boundary-value problems, one readily ap- 
preciates the importance of such approxi- 
mate analytical forms. 

Table 1 shows the region of @ values in 
which the two approximate solutions de- 
part by more than 5% from the exact nu- 
merical result for different values of 5 and 
K. As can be seen, the agreement is out- 
standing. Figure 2 clearly point out that us- 
ing adsorption equilibrium assumption may 
introduce serious errors in the interpreta- 
tion of experimental data. We believe that 
all experimental surface diffusivities de- 
rived from this assumption should therefore 
be reevaluated. 

To emphasize the above point and to 
show how serious the resulting errors are, 
the following “paper” experiment was per- 
formed. Using constant values of K, 1 - 
XL, and [ and a region of 0 values (O-100), 
Eqs. (Q-(12) were numerically solved to 
calculate the corresponding enhancement 
factors. Using these enhancement factors 
and Eq. (66) the 5 values required to predict 
these factors were calculated. These calcu- 
lated 5-r values (5-r is proportional to D,) 
are then compared with the original 5-r 
value and the resulting percent error is then 
plotted in Fig. 3 for different values of @. 

As can be seen from Fig. 3, the adsorp- 
tion equilibrium assumption can lead to se- 
rious underestimates of D,. Figures 4 and 5 
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TABLE 1 

Region of @ Values for Different Values of 5 and K 

0.01 0.1 0.5 0.9 

5 = 0.1 
K=l 1.5-4.8 I S-4.8 1.6-4.6 1.7-4.4 

(=I 
K=l 0.5-2.4 0.5-2.4 0.5-2.4 0.6-2.3 

5 = 10 K=l 0.2-0.7 0.2-0.7 0.2-0.8 0.2-0.8 

5 = 0.1 K = 0.1 0.7-2.7 0.7-2.7 0.7-2.7 0.7-2.7 

5 = 0.1 K= 10 2.0-8.7 2.0-8.7 2.5-8.3 2.5-8.3 

show enhancement factors vs (1 - XL) for 
different values of the other parameters. 
They qualitatively represent the trend of 
actual experimental data, which we now 
discuss. 

SOME EXPERIMENTAL OBSERVATIONS 

Figure 6 shows experimental data for ef- 
fective diffusivity, generated in our experi- 
mental apparatus, shown schematically in 
Fig. 7. It contains a Pyrex-glass diffusion 
cell, consisting of two well-mixed half-cells 
separated by the membrane. The cell can 
operate in a batch-batch, CSTR-CSTR, or 
batch-CSTR mode. In the data presented 
here, the diffusing species is Ni-T3MPP 
porphyrin diffusing through a Nuclepore 

ERROR 
IN D, 

FIG. 3. Percentage error in D, as a function of the 
Thiele Modulus (@). 

3.2 

*=10 

2.8 - 

2.4 - 

2.0 - 

FIG. 4. Variation of enhancement factor as a func- 
tion of (1 - X,) for various combinations of 4 and K; @ 
= 10. 

polycarbonate membrane with straight cy- 
lindrical pores of 300 A in diameter and a 
thickness of 6 pm. To initiate the experi- 
ment, the bottom half-cell is filled with the 
desired concentration of Ni-T3MPP in min- 
eral oil. Then the membrane is installed, the 
cell is assembled and the top half-cell is 
filled with pure mineral oil. The concentra- 
tion gradient between the two well-mixed 

3.2 

24 

(I-X,) 

FIG. 5. Variation of enhancement factor as a func- 
tion of (1 - X,) for various values of K; 5 = 0.01, @ = 
10. 
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3.2 - 

2.6 - 

0.4 - 

0.0 
1.0 

I I 
4.2 1.4 
AC, ppm Ni 

1.6 

FIG. 6. Effect of concentration driving force on ef- 
fective diffusivity for Ni-T3MPP at 25°C; membrane 
pore size 300 A, membrane thickness 6 pm. 

half-cells is continuously monitored by a 
double-beam UV spectrophotometer. One 
observes initially (for the first few hours) 
that the diffusional flux is a nonlinear func- 
tion of the concentration difference in the 
half-cells, but at later times it becomes lin- 
ear. This indicates that surface diffusion 
has ceased to be important, as is the case 
for small 1 - XL in Figs. 4 and 5. Figure 8 
shows similar behavior for another mem- 
brane of the same thdckness (6 pm) with 
pore diameter of 150 A. 

CONCLUSIONS 

The primary goal of the above study has 
been to clarify certain basic questions and 
outstanding problems in the field of surface 
diffusion in porous catalysts. Attention has 
been focused on various mathematical 
techniques for the analysis and interpreta- 
tion of experimental data. The common as- 
sumption of adsorption equilibrium has 
been shown to lead to serious error (Fig. 3). 
It is clear, therefore, that most of the exis- 
ting surface-diffusion data should be re- 
evaluated. 

Two mathematical perturbation tech- 
niques, which have been presented, lead to 

O”IPw ON mw O”IPw ON mw 
CHART PtCOIDm CHART PtCOIDm 

FIG. 7. Diffusion apparatus. FIG. 7. Diffusion apparatus. 

analytical expressions for transport en- 
hancement by surface diffusion, as a func- 
tion of the relevant system parameters. 
Since these expressions appear to provide 
reliable prediction of overall diffusivities it 
is hoped that future work in the area will 
employ this relatively simple type of analy- 
sis to check the often erroneous assumption 
of adsorption equilibrium. 

There remain a number of interesting 
questions in the field. Little is known about 
surface diffusion in the presence of surface 
and bulk chemical reactions or about the 
effect of complex pore structure (for exam- 

3.6 - 

3.2 - 

2.3 - 

2.4 - 

!L! !Ex 
AC 

,fy 2.0 - 

(cm/W Id- 

4.2 - 

0.8 - 

0.4 - 

0.0. I I 
1.0 4.2 1.4 1 

AC, ppm NI 

FIG. 8. Effect of concentration driving force on ef- 
fective diffusivity for Ni-T3MPP at 25°C; membrane 
pore size IS0 A, membrane thickness 6 pm. 
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ple, are the surface and bulk tortuosity fat- X, dimensionless concentration in 
tots equal?). Also, the microscopic statisti- the core of the pore, used in the 
cal aspects of surface diffusion need more singular perturbation analysis 
study. It is not clear to us whether the corn- XcO, X,, X, at 5 = 0 and 5 = 1 
monly utilized Fickian forms are correct for Xi([) terms of the perturbation expan- 
diffusion in the presence of adsorption and sions, Eqs. (14) and (30) 
surface inhomogeneities. Certain of these 
issues will be addressed in future works. Greek Symbols 

& 

APPENDIX: NOMENCLATURE 

a, 

C 

CH 

CL 

Db 

& 

DS 

G(C, n> 

Gx, G 

I 

Jb 

JS 
K 

Ki 
& 
L 
M 

N 

n 
nt 

r 
t 

t’ 

surface to volume ratio; for a cy- 
lindrical pore a, = 2/r 

concentration of diffusing species 
in the pore 

concentration at x = 0 (left pore 
boundary) 

concentration at x = L (right pore 
boundary) 

bulk pore diffusivity 
effective pore diffusivity, defined 

by Eq. (23 
surface diffusivity 
net rate of adsorption, defined by 

Eq. (7) 
partial derivatives of G, defined 

by Eq. (18) 

t&o, &L 

e&3 

parameter used in regular and sin- 
gular perturbation analysis 

(‘%Ddhav&> 
dimensionless surface concentra- 

tion, n/n, 
value of r3 in the core of the pore, 

used in singular perturbation 
analysis 

&at[=O,t= 1 
terms of perturbation expansions, 

Eqs. (15) and (31) 
terms in the singular perturbation 

analysis 
<( 1 + K)*IK 
XlL 
$ &( 1 + K)2 + l)/K( 1 + K)]1’2 
L[KantcH/L)b]“2 
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